
A PRACTICAL JOURNAL OF z/OS TUNING AND MEASUREMENT ADVICE

Cheryl Watson’s REPRINT

Tuning Letter

This document is a reprint of a Cheryl Watson’s Tuning Letter 2022 No. 2 article titled

‘Optimizing DFSORT Use of Z Sort Accelerator’.

One of the enhancements on the IBM z15 is the IBM Integrated Accelerator for Z Sort.

DFSORT exploitation of this capability is disabled by default, meaning that customers

must explicitly enable it. This can be done at the system or individual sort level.

Readers have been asking about the best way to track exploitation of this new capability,

and if there are things they can do to increase the number of sorts that can benefit from

it. The relevant information is in the DFSORT SMF records, but not everyone has tools to

format those records. To assist DFSORT customers quickly and easily get the required

insights, we worked with IBM’s Sri Hari Kolusu to create three sample ICETOOL reports

and the information in this article.

In addition to providing information about Z Sort exploitation, the sample reports illustrate

valuable techniques that could be applied if you would like to use ICETOOL to report on

other SMF record types. Additionally, the article contains information to help readers that

are not familiar with ICETOOL to customize the sample report jobs to meet your unique

needs.

We hope this article and the corresponding report jobs will prove valuable. Please let us

know if you have questions or suggestions. And THANK YOU to Kolusu for his

invaluable help and suggestions in creating this article.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 1
© 2022 Watson & Walker, Inc.

mailto:technical@watsonwalker.com
mailto:technical@watsonwalker.com

Optimizing DFSORT Use of Z Sort Accelerator

Regular Tuning Letter readers will know that we’ve taken a keen interest in the IBM

Integrated Accelerator for Z Sort (hereafter simply referred to as ‘Z Sort’) capability that was

delivered on the z15 generation of CPCs. Every z15 (or later) core includes a Sort

Accelerator function at no additional charge. IBM benchmarks indicate sorts that are able to

exploit the Sort Accelerator can achieve elapsed time savings of between 20% and 30%,

and CPU time savings of up to 40%. Accordingly, Z Sort would seem to provide something

for everyone - financial and capacity savings for the execs and accountants, and

performance improvements for the techies and system users.

However, not every DFSORT ‘sort’ will benefit from Z Sort. For example, if you use DFSORT

to simply copy the contents of one file to another, no sorting is involved, so that job step

obviously would not use Z Sort. On the other hand, some sorts might not use Z Sort

because of an environmental restriction, such as the step’s MEMLIMIT being too low. In the

latter case, adjusting the MEMLIMIT settings (an infrastructure-level change) might result in

more sort job steps being able to benefit from Z Sort.

The objective of this article is to show how you can use information in the DFSORT type 16

SMF records to better understand:

 How many of your sort job steps are using Z Sort?

 What benefits are your sort steps achieving from the use of Z Sort?

 What are the most common reasons for sort job steps not using Z Sort, and are there

actions you can take at the infrastructure level to increase the number of sorts that

benefit from Z Sort?

Before we proceed, we want to thank Sri Hari Kolusu from the IBM DFSORT development

team for his outstanding help, enthusiasm, and patience, and for providing the ICETOOL

report programs this article is based around.

Target Audience

This article is appropriate for system programmers, performance and capacity analysts,

production control staff, and application developers that use DFSORT. While the article

uses DFSORT SMF records, you do not need to be an SMF expert to benefit from it. The

sample DFSORT jobs we use to illustrate the examples in this article are available on the

IBM DFSORT website and can be used with minimal JCL changes. It is possible to make

relatively minor changes to the samples without having ICETOOL expertise, however

more extensive changes would require some level of ICETOOL experience.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 2
© 2022 Watson & Walker, Inc.

https://www.share.org/Events/Past-Events/Proceedings/Proceeding-Details/making-the-most-of-zsort
https://www.ibm.com/support/pages/node/6603051

Introduction

We have already covered the Z Sort concepts and latest status information in previous

Tuning Letter articles, so we will not go through all that information again. While it is not

necessary to have that information before reading this article, it would be helpful if you

decide to continue your Z Sort tuning exercise beyond the scope of this article. The articles

in question are:

 z/OS Sort Accelerator in Tuning Letter 2020 No. 3.

 z15 Sort Accelerator Latest Status in Tuning Letter 2021 No. 4.

 There is also information in our SHARE in Dallas 2022 Watson & Walker zRoadshow .

We also want to remind you that IBM’s zBNA tool was enhanced to provide additional

reports and capabilities in support of Z Sort. One of the advantages of using zBNA is that it

includes information from SMF type 30 records as well as the type 16 records that are the

focus of this article. You can find more information in this excellent video: Putting the New Z

SORT Named Favorite into Practice by John Burg and Joel Moss (while it might appear

that you need a Box userid to download this file, if you just click on ‘Download’ you can

download the file without having to logon to Box). We hope the information in this article will

help you get even more value out of the Z Sort support in zBNA. However, if you are unable

to install zBNA on your work computer, or if pulling the required SMF data down to your PC

is not permitted or simply too much trouble, or if you want to view fields in the SMF records

that are not provided by zBNA, the sample reports described in this article should help you.

Reminder: A typical sort consists of three partsa:

1. Read the data into memory.

2. Sort it into the new desired sequence.

3. Write the sorted data to the output data set.

The Sort Accelerator addresses the second of those parts - sorting the data. When

predicting the benefits Z Sort might provide, remember that the elapsed time of the first

and last parts will be unaffected by whether the actual sorting used the accelerator or not.

The IBM benchmark numbers mentioned above are based on the entire job step’s

elapsed and CPU times. For example, if the step elapsed time prior to enabling Z Sort was

100 seconds (that includes reading the file, sorting it, and writing the sorted data to the

output file) and IBM claim a 20% improvement, that means that the total elapsed time

dropped to 80 seconds. When you consider that Z Sort doesn’t help the first or third items

in the list above, that means that the elapsed time of the actual sort processing dropped

by more than 20%. That’s especially impressive when you consider that vendors have

been tweaking and fine tuning sort algorithms for over 40 years now .
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 3
© 2022 Watson & Walker, Inc.

https://wwpublications.com/pdf/2020-03-005.PDF
https://wwpublications.com/pdf/2021-04-005.PDF
https://watsonwalker.com/wp-content/uploads/2022/05/2022-03-101-Watson-and-Walker-zRoadshow.pdf
https://ibm.ent.box.com/v/zBNA-Z-Sort-Webinar
https://ibm.ent.box.com/v/zBNA-Z-Sort-Webinar

For more information about general DFSORT tuning recommendations and best practices,

refer to the ‘Sorting Out Your Sort Performance’ article in Tuning Letter 2021 No. 1.

Extracting Z Sort Insights from DFSORT SMF Records

The DFSORT exploitation of Z Sort is intended to be relatively transparent. You can turn Z

Sort exploitation ON or OFF at the system or individual job step level. The default is for Z

Sort to be disabled.

If the enabling PTF has been installed, DFSORT will examine the sort statements and the

execution environment and determine if the Z Sort restrictions have been met. If they have,

and the required resources are available, it will automatically use Z Sort. If they have not, or

if the required resources are not available, it will not.

Looking at the sort at the job step level (in the SMF type 30 records, for example), it should

be transparent to you whether Z Sort was used or not. This is all goodness - the easier it is

to implement something, the more value it will deliver. And especially in these times, when

most z Support teams have too much work and too few people, ease-of-installation and

ease-of-use are even more important.

However, what about if you specifically want more information about how much value you

are getting from Z Sort? IBM benchmarks are all well and fine, but it means much more

when you can show your execs how much CPU time (and, potentially, money) Z Sort is

saving you.

The ICE267I message in the sort step job log will tell you whether Z Sort was used, and if

not, why not. That is very helpful information if you are investigating a particular sort. But

what if you would like an overview of Z Sort exploitation across all your sorts? For that, we

need our friend, SMF.

a. These parts equate roughly to the description of DFSORT processing shown in
https://www.ibm.com/docs/en/zos/2.4.0?topic=works-dfsort-processing#idg7073__stmtseq, with the
first part including everything up to and including the INREC box, the second part being the SORT/SUM
box, and the third part being everything including and after OUTREC processing.

Note: Z Sort does not need to be enabled for a job step in order for DFSORT to provide

you with a reason code indicating why Z Sort would not be used. This allows you (and

zBNA) to evaluate sorts in advance of enabling Z Sort, so that you can get a feel for the

potential benefits or the restrictions that will limit how many sorts can use Z Sort.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 4
© 2022 Watson & Walker, Inc.

https://www.ibm.com/docs/en/zos/2.4.0?topic=works-dfsort-processing#idg7073__stmtseq
https://watsonwalkerpublications.com/pdf/2021-01-008.PDF
https://www.ibm.com/docs/en/zos/2.5.0?topic=messages-ice267i

DFSORT writes a wealth of interesting information to its

type 16 SMF records. However, if you want the records to

contain information about the use of Z Sort (including

whether Z Sort was even used or not), you must be using the

SMF=FULL installation setting in DFSORT. (You can find

more information about the SMF options in the ‘Collecting

statistical data’ chapter of the z/OS DFSORT Installation and

Customization manual).

There are a number of key fields in the type 16 records that help you identify which sorts

used Z Sort, or if they didn’t use Z Sort, why they didn’t:

ICEZSRT / ICEZSRTL / ICEZSRTN

These fields in the Header section provide the offset to, length

of, and number of Z Sort sections. Note that it is possible for a

type 16 record to contain a Z Sort section even if Z Sort was

not actually used for the sort.

ICEFLBY5 Flag bit indicating if Z Sort was used for this sort - if the bit is

turned ON, Z Sort was used.

ICEZSRNU Byte containing the reason code describing why Z Sort was not

used. The meanings of the reason code are described in the

text for the ICE267I message.

The ICEFLYB5 and ICEXSRNU fields are both contained in

the Data section of the type 16 records.

ICEZSFLG This flag byte is in the Z Sort section. If bit 0 is turned on, the

contents of the Z Sort section are valid. Remembering that it is

possible to get a Z Sort section even if Z Sort was not used,

you should check the setting of this flag before assuming that

the data in the Z Sort section represents an actual use of Z

Sort.

SMF=FULL must
be specified in
order to get Z

Sort information
in DFSORT SMF

records.

Note: The DFSORT manual warns against the use of SMF=FULL for sorts of variable

length records, however we are assured that is obsolete information and can be ignored.

Note: This is a key point, so it is worth repeating. You will almost certainly have type 16

records that contain a Z Sort section even though the sort did not use Z Sort. However, not

all sorts will contain a Z Sort section. This makes the processing of type 16 records a little

more complex because your report program needs to cater for records that do have a Z

Sort section, as well as records that do not.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 5
© 2022 Watson & Walker, Inc.

https://www.ibm.com/docs/en/zos/2.5.0?topic=dfsort-collecting-statistical-data
https://www.ibm.com/docs/en/zos/2.5.0?topic=dfsort-collecting-statistical-data
https://www-40.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R5sc236881/$file/icei100_v2r5.pdf
https://www-40.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R5sc236881/$file/icei100_v2r5.pdf
https://www.ibm.com/docs/en/zos/2.5.0?topic=messages-ice267i

The settings of the ICEFLBY5 and ICEZSFLG bits should be

the same.

When the Z Sort-enabling DFSORT PTFs are installed on a system, every sort step will be

evaluated to determine if it meets the criteria to be eligible to use Z Sort. This means that

every SMF=FULL type 16 record must fall into one of two categories:

 The ICEFLBY5 flag is turned ON, indicating that the sort used Z Sort, or,

 The ICEZSRNU byte is non-zero, indicating that Z Sort was not used, and why not.

Sample Type 16 Record Analysis Reports

It is beyond the scope of this article to make you a DFSORT or ICETOOL expert.

Fortunately, you do not need to be a DFSORT or ICETOOL expert to use the sample

reports. Nevertheless, we felt that it would be helpful to spend a little time to explain the logic

of the sample job that creates the detailed, job step-level, reports - this information might

help if you want to change the job, or if your changes are not delivering the expected results.

Three sample report jobs are provided:

ZSDETRPT This job provides a report that shows detailed information

about every job step that used Z Sort. It includes information

from the Z Sort section of the type 16 record.

NZDETRPT This job provides a report that shows detailed information

about every sort job step that did not use Z Sort.

SUMRPT This job provides a report showing a summary of the count and

CPU time for all the jobs that did use Z Sort, and the same

information for each of the reason codes for not using Z Sort.

Because the ZSDETRPT report contains information from the Z Sort section, it is the most

complex of the three sample jobs. It consists of the following steps:

1. Delete the report data set from a previous run of the job.

2. Analyze the SMF records to determine the offsets to the Z Sort sections in the records.

Get the Sample Now: If you have not already done so, you should download the sample

DFSORT jobs and associated symbol definition members from the DFSORT website now.

This will enable you to step through the examples and try the jobs on your system as we

go along.

Note that you should also have at least a few hours’ worth of SMF type 16 records

available - and don’t forget that the records must have been produced after the

SMF=FULL option was enabled.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 6
© 2022 Watson & Walker, Inc.

https://www.ibm.com/support/pages/node/6603051

3. A report step that shows information about each sort step that did use Z Sort.

DFSORT SMF records are structured like many other SMF records in that they have a

Header section that is a fixed length, followed by a variable number of other sections. Each

section is defined in a ‘triplet’ near the end of the Header section. A single Product section

(also fixed length) follows the Header section. The Product section is followed by a single

Data section. Depending on which functions are invoked in the sort, there may be a variety

of sections following the Data section - for example, if there were multiple input files to the

sort, then there will be multiple Input Data Set sections.

This variability means that the offset to the Z Sort section can vary. As you know, sort control

statements are based on offsets in the record being processed, so this variability presents

something of a challenge when processing these varying-length records with sort or

ICETOOL. To get around this, Kolusu created a step that reads the input SMF file,

determines the potential offsets to the Z Sort sections, and creates a set of DFSORT

IFTHEN statements that are then input to the report step of the job.

The ZSDETRPT report (described in ‘Which Sort Job Steps

Used Z Sort?’ on page 8) displays fields from the Header,

Product, Data, and Z Sort sections. Because the offset of the

Z Sort section is variable, the report uses the IFTHEN

statements to locate the Z Sort section and then remap the

record in memory to move the Z Sort section to immediately

after the Data section. His technique for reformatting SMF

records into a format that is more ICETOOL-friendly might be of interest if you have

struggled with trying to use ICETOOL with SMF records.

The NZDETRPT report (described in ‘Which Sort Job Steps Did Not Use Z Sort?’ on

page 11) is similar to the ZSDETRPT report. However, because it focuses on the sorts that

did not use Z Sort, it does not use any of the fields in the Z Sort section. This makes the

ICETOOL statements for this report a little simpler. This job produces a report with

information about each sort step that did not use Z Sort, along with an English description of

why Z Sort was not used.

The other sample job (described in ‘Summary of Overall Z Sort Usage’ on page 18) is called

SUMRPT. Rather than providing detailed, job step-level reports, it provides a summary of

the various reason codes encountered by job steps that were not able to use Z Sort. It

doesn’t need information from the Z Sort section, so like the NZDETRPT report, its

ICETOOL statements are a little simpler.

Note that Kolusu’s samples rely heavily on the use of DFSORT symbols to relate field

names to offsets. The use of symbols mean that you can use statements like this:

INCLUDE COND=(ICERTYP,EQ,16)

rather than like this:

See the
ZSDETRPT report
for an interesting

technique to
handle SMF

records.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 7
© 2022 Watson & Walker, Inc.

INCLUDE COND=(6,1,BI,EQ,16)

The use of symbols also eliminates the need to manually calculate the offset for every field

you might be interested in. The DFSORT website includes an XMIT-format PDS containing

all the symbol definitions, with one member for each section in the FULL type 16 record.

Which Sort Job Steps Used Z Sort?

The ZSDETRPT report provides information about every job step that did use Z Sort. You

might want to use such a report as a quick, single-point-of-reference, to see if a given sort

step used Z Sort. You could also find this information in the job’s log, however, support staff

don’t always have security access to read production job logs. Also, if you want to check on

more than one job, it would be a lot faster to find the information in one data set, rather than

having to go in and out of multiple job logs.

Figure 1 - Overview section of ZSDETRPT report

An example of the left-hand side of the report is shown in Figure 1. This section of the report

provides the job name, step name, step number, and the step end date and time

(unfortunately the type 16 record doesn’t contain the job step start time). It would be nice to

also be able to search using the job number, however that information is currently not

contained in the type 16 record.

This report also shows the total TCB time (to an accuracy of hundredths of a second), SRB

time (also accurate to hundredths of a second), and the number of records sorted. The SRB

time field is interesting because it illustrates how you can easily perform calculations on the

Helpful documentation: All the information in the sample reports comes from the type 16

SMF records. You can easily add or remove fields to the reports (as we will see in

‘Customizing the Sample Job’ on page 20), so you might find it helpful to have the type 16

record layout to hand while reading the following sections. You can find the information

online here:

https://www.ibm.com/docs/en/zos/2.5.0?topic=customization-smf-type-16-record. If you

want to see the information for your exact z/OS release and service level, the mapping

macro for the type 16 records is contained in the ICESMF member of the

SYS1.SICEUSER data set.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 8
© 2022 Watson & Walker, Inc.

https://www.ibm.com/support/pages/node/6603051
https://www.ibm.com/docs/en/zos/2.5.0?topic=customization-smf-type-16-record

raw data that is read by ICETOOL. The type 16 record contains the SRB time at the start of

sort processing (ICESRBTS) and at the end of the sort (ICESRBTE), but not the difference

between the two. The sample report subtracts the ICESRBTS value from the ICESRBTE

value and provides the difference in the SRB Time column.

Figure 2 - Memory-related section of ZSDETRPT report

The next section over to the right (shown in Figure 2) shows the number of MBs sorted, the

DFSORT MOSIZE value in effect for the step, and the number of memory objects actually

used. Remember that sorts that use memory objects are more efficient than those that use

sort work data sets, so these fields give you an idea of how much memory the sorts are

currently using, and how close to the MOSIZE limit the jobs are. If you use the default

MOSIZE, it is extremely unlikely that any jobs will get anywhere close to the limit, but if you

override the MOSIZE value, then it is possible that your MOSIZE could become a constraint

on the use of Z Sort.

If you are not familiar with the many storage-related DFSORT parameters, we highly

recommend reading the ‘DFSORT Storage Considerations’ section of the DFSORT

Installation and Customization Guide. There is also a very helpful SHARE presentation -

DFSMS DFSORT: Resource Usage and Understanding, by Vicky Vezinaw.

Figure 3 - ZSDETRPT information about sort work data sets

The next section over to the right again (shown in Figure 3) provides information about sort

work data sets. Two interesting metrics are the number of EXCPs to SORTWK data sets1

and the number of allocated SORTWK tracks. Ideally, a sort that uses Z Sort will not use

1 Note that DFSORT issues 1 ‘test’ EXCP for each possible SORTWK data set, to verify that the sort work data
sets, if allocated, would support zHPF.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 9
© 2022 Watson & Walker, Inc.

https://www.ibm.com/docs/pt/zos/2.5.0?topic=considerations-dfsort-storage
https://www.share.org/Events/Past-Events/Proceedings/Proceeding-Details/dfsms-dfsort-resource-usage-and-understanding

SORTWK data sets at all, so it might be worthwhile to review the report for sort steps with

more than zero sort work data set tracks (ICEWALLE). In our sample data, there were steps

that sorted less than 700 MB that had over 100,000 tracks of sort work data sets, while other

steps that sorted more than 4 GB with 0 tracks of sort work data sets. A little JCL

modernization to remove //SORTWKnn DD statements might eliminate the unnecessary

allocation of those sort work data sets.

The final section (shown in Figure 4), over on the far right of the report, provides information

that is only available for sorts that used Z Sort. The ‘zSORT Flag’ column interprets the

ICEZSFLG flag byte. The zSORT Phase 1 Elapsed and TCB time columns report the time

that DFSORT spends processing the data after it has been read into memory but before it is

sent to the Sort Accelerator for sorting. And the Phase 3 represents the cleanup work at the

end of the sort.

Figure 4 - Z Sort-unique fields in ZSDETRPT report

If there are other fields that you believe would be valuable, check the provided ZSDETRPT

job. The ICETOOL statements include a number of fields that we commented out - you

might find that you can get the field you are interested in by simply uncommenting that

statement. For more information about modifying the supplied sample jobs, refer to

‘Customizing the Sample Job’ on page 20.

Sample Job to Print DFSORT Default Values

As you review which jobs did or did not use Z Sort, it might be helpful to have a list of the

default DFSORT values that are in use on your system. You can print those values using

this JCL:

//ICEDFLT JOB CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//SHOWDEF EXEC PGM=ICETOOL,REGION=1024K
//TOOLMSG DD SYSOUT=*
//DFSMSG DD SYSOUT=*
//LIST1 DD SYSOUT=*
//TOOLIN DD *
DEFAULTS LIST(LIST1)
/*
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 10
© 2022 Watson & Walker, Inc.

Which Sort Job Steps Did Not Use Z Sort?

The NZDETRPT report shows the sort steps that did not use Z Sort, and why they didn’t use

Z Sort. It is important to remember that it simply wouldn’t make sense for some ‘sorts’ to use

the Sort Accelerator. One example we mentioned previously is where you use DFSORT to

simply copy or merge a data set - such operations do not sort the data, so the Sort

Accelerator has no role in that operation. There are other scenarios where DFSORT

currently doesn’t use the Sort Accelerator, but might do so in the future. And, finally, there

are situations where Z Sort is not used for environmental reasons - for example, if there is

insufficient real or virtual storage available to the sort. This latter group are the most

interesting ones in the context of this article.

A snippet from the leftmost section of the NZDETRPT report is shown in Figure 5. You can

see this information is very similar to the ZSDETRPT report.

Figure 5 - Overview section of the NZDETRPT report

One of the differences between the NZDETRPT and the ZSDETRPT reports is that the

NZDETRPT report shows the reason why Z Sort was not used if you scroll to the right (in

plain English, as shown in Figure 6). Also, as you can see, the NZDETRPT report is sorted

on the reason code, so all the job steps that had the same reason code are grouped

together. Of course, you can easily change the sort order to be based on any field you wish.

Figure 6 - Z Sort reason code for each job step

At the time of writing this article, there are nearly 30 documented reasons for DFSORT not

using Z Sort. Table 1 on page 12 shows all the reasons provided in the ICE267I message, a

brief description, an indication of whether each one can be addressed at the infrastructure

level, and a brief comment with a little more information. As you will see in the table, many of
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 11
© 2022 Watson & Walker, Inc.

the reasons for a sort not using Z Sort are outside your control. Therefore, the NZDETRPT

report focuses on aspects of each sort that are under your control.

Table 1 - Reasons Why Z Sort Was Not Used

Reason Code Description Addressable at the
infrastructure level?a

Comment

193 NOT RUNNING ON A
Z15 AND HIGHER
PROCESSOR.

Possibly Direct job to a system running on
a z15 or later if possible.

194 ZSORT IS NOT
ENABLED/ACTIVATED

Possibly Enable Z Sort in ICEPRMxx
member or by specifying OPTION
ZSORT via //DFSPARM DD *

195 SORT FIELDS=COPY
OR OPTION COPY IS
USED

NO Not supported for use with Z Sort.

196 MERGE FIELDS= IS
SPECIFIED

NO Not supported for use with Z Sort.

197 INREC IS SPECIFIED NO Not supported for use with Z Sort.

198 OUTREC IS
SPECIFIED

NO Not supported for use with Z Sort.

199 OUTFIL IS SPECIFIED NO Not supported for use with Z Sort.

200 PROGRAM INVOKED
SORT

NO Not supported for use with Z Sort.

201 FAILED TO GET THE
REQUIRED MEMORY
OBJECT

Possibly See the ICE267I message
description for list of ways to
address this.

209 MINIMUM MEMORY
REQUIREMENTS ARE
NOT MET

Possibly See the ICE267I message
description for list of ways to
address this.

210 UNABLE TO OBTAIN
REQUIRED MEMORY
OBJECT

Possibly See the ICE267I message
description for list of ways to
address this.

211 UNSUPPORTED SORT
FIELDS

NO Not supported for use with Z Sort.

212 SUM FIELDS= IS
SPECIFIED

NO Not supported for use with Z Sort.

213 JOINKEYS MAINTASK,
SUBTASK1 OR
SUBTASK2

NO Not supported for use with Z Sort.

214 MODS STATEMENT IS
SPECIFIED

NO Not supported for use with Z Sort.

215 UNKNOWN FILE SIZE
OR FILSZ=0

Possibly See ‘Reason 215, 233 - FILSZ
Considerations for Z Sort’ on
page 16.

216 VARIABLE LENGTH
INPUT FILE LRECL <=
24

NO Not supported for use with Z Sort.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 12
© 2022 Watson & Walker, Inc.

https://www.ibm.com/docs/en/zos/2.5.0?topic=messages-ice267i
https://www.ibm.com/docs/en/zos/2.5.0?topic=messages-ice267i
https://www.ibm.com/docs/en/zos/2.5.0?topic=messages-ice267i
https://www.ibm.com/docs/en/zos/2.5.0?topic=messages-ice267i
https://www.ibm.com/docs/en/zos/2.5.0?topic=messages-ice267i
https://www.ibm.com/docs/en/zos/2.5.0?topic=messages-ice267i

As you can imagine, there could be multiple reasons why a given sort doesn’t use Z Sort; for

example, NOZSORT was specified, AND the job is running on a z14, AND it is a COPY

rather than a SORT. The reason that is presented in the ICE267I message (and in the

ICEZSRNU field in the type 16 SMF record) depends on the sequence in which DFSORT

code evaluates the sort. If DFSORT detects a condition that means that it can’t use Z Sort

for that sort, it will take a note of that condition and then revert to a traditional sort. As a

result, it is possible that you might address the reason shown in the report and find that the

sort still doesn’t use Z Sort, but for a different reason. Nevertheless, by addressing that

reason you will have moved a step closer to being able to benefit from Z Sort. And if you

217 INPUT OR OUTPUT IS
A VSAM CLUSTER

NO Not supported for use with Z Sort.

226 EXCP ACCESS
METHOD WAS
FORCED TO BE USED

NO Not supported for use with Z Sort.

227 NOT ENOUGH
BELOW-THE-BAR
STORAGE

Possibly Specify SIZE=MAX in ICEPRMxx
or OPTION MAINSIZE=MAX as a
runtime option. Also, refer to the
section titled ‘Required main
storage’ in the DFSORT
Installation and Customization
Guide.

228 SORT FIELDS
BEYOND 4092 FOR
VARIABLE RECORDS

NO Not supported for use with Z Sort.

229 SORT KEY LENGTH >
4080 OR 4088

NO Not supported for use with Z Sort.

230 INTERNAL CONDITION
THAT PREVENTS
ZSORT

NO Not supported for use with Z Sort.

231 SIZE OF THE FILE TO
SORT < 32 MB

NO Not supported for use with Z Sort.

232 ZHPF DISABLED FOR
SORTWK DATASETS

Possibly Verify that your disk subsystem
supports zHPF, then enable zHPF
in IECIOSxx member of Parmlib.

233 SIZE/FILSZ=UXXXXXX
IS SPECIFIED

Possibly See ‘Reason 215, 233 - FILSZ
Considerations for Z Sort’ on
page 16.

240 FAILED TO GET
MEMORY OBJ OF 75%
OF FILE SIZE

Possibly See the ICE267I message
description for list of ways to
address this.

241 INSUFFICIENT DISK
WORK SPACE

Possibly Remove SORTWKnn DD
statements and let DFSORT
allocate them dynamically.

a. NOTE. This reflects DFSORT exploitation of Z Sort in June 2022. It is possible that some of these
restrictions might be addressed in future PTFs or DFSORT releases.

Reason Code Description Addressable at the
infrastructure level?a

Comment
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 13
© 2022 Watson & Walker, Inc.

https://www.ibm.com/docs/en/zos/2.5.0?topic=considerations-required-main-storage
https://www.ibm.com/docs/en/zos/2.5.0?topic=considerations-required-main-storage
https://www.ibm.com/docs/en/zos/2.5.0?topic=messages-ice267i
https://www.ibm.com/docs/en/zos/2.5.0?topic=messages-ice267i

refer to the list of reasons shown in Table 1 on page 12 while you are reviewing a particular

sort, you might be able to use that opportunity to address any other potential reasons for the

sort not being able to use Z Sort.

We hope that you can easily combine the information in the NZDETRPT report with that

provided in the table above and the following sections to determine if you can take action to

increase a sort’s chances of being eligible to use Z Sort.

Reason 193 - Sort Not Run on z15

The Sort Accelerator is available on all z15 (both business class and enterprise class) and

later CPCs at no additional charge. If a sort is run on a system that has the DFSORT Z

Sort-enabling PTFs, but that system is running on a CPC older than z15, reason code 193

will be reported. Obviously your IBM team would love you to run out and upgrade your CPC

to a z15 (or, even better, a z16!). However, in the interim, if you have at least one z15 in your

installation, you might be able to route that job to a system running on the z15, for example

by adding a WLM Scheduling Environment that is enabled on systems running on a z15,

and adding a SCHENV statement to the job that points at that Scheduling Environment.

Reason 194 - Z Sort Not Enabled

If your system has the Z Sort PTFs for DFSORT and it is running on a z15 or later CPC, the

sort will produce reason 194 if Z Sort is not enabled. You can control whether or not Z Sort is

enabled by default by updating the ZSORT parm in your ICEPRMxx member of Parmlib.

If Z Sort IS enabled at the system level, but the sort is still producing reason code 194, that

means that the system-level setting is being overridden at the step level through the use of

the OPTION NOZSORT statement in the //DFSPARM DD * JCL statement. If that is the

case, it is possible that someone explicitly disabled Z Sort for that sort because of a previous

problem encountered when that sort tried to use Z Sort. You should investigate this before

removing the NOZSORT setting.

Reasons 201, 209, 210, and 240 - MEMLIMIT-Related Issues

DFSORT use of memory, and the many DFSORT parameters related to controlling that use,

is a complex topic that deserves an article all of its own. It is certainly more than we can

cover in this article. However, there are just a few things to keep in mind:

 The objective of the Sort Accelerator is to reduce the time to perform a given sort. To

achieve this, you really don’t want to be shuffling data back and forth to sort work data

sets during the sort process. Achieving this means giving the LPAR sufficient memory,

and giving each sort enough below-the-bar virtual storage and (64-bit) memory objects to

perform the sort in memory.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 14
© 2022 Watson & Walker, Inc.

– Don’t forget the potential knock-on benefits of more efficient sorts. For example, if

more efficient sorting allows you to reorganize your databases more frequently, that

might result in reduced CPU consumption in the tasks that access that data.

 At the start of each sort, DFSORT uses the size of the input file(s) to determine how

much memory it will need to perform an in-memory sort. The sort must be able to allocate

enough memory objects (pageable 1MB page frames) to hold at least 75% of the input

files in order to be eligible to use Z Sort. Ideally, there will be enough memory to allocate

memory objects that sum to twice the size of the input files. (Refer to the ‘z/OS Sort

Accelerator’ article in Tuning Letter 2020 No. 3 for a simplified description of how a sort is

performed).

 There are DFSORT options to limit the amount of memory that can be used by an

individual sort and also by all concurrent sorts.

– The recommended individual-sort-level values (MOSIZE=MAX and

HIPRMAX=OPTIMAL) are also the defaults.

– The recommended system-level limit for sort memory use (EXPMAX=MAX) is also the

default.

– As a result, if you don’t change any of the defaults you should be well positioned from

a DFSORT perspective.

 However, regardless of what DFSORT might like to do, each sort might also be limited by

the amount of above-the-bar memory available to the address space. This is controlled

by the MEMLIMIT parameter. The MEMLIMIT value that controls a given job step can

come from a number of places:

– The system-level default value. This is set using the MEMLIMIT parm in the

SMFPRMxx Parmlib member. You can determine the current value by using the

D SMF,O command.

– The MEMLIMIT keyword on the sort’s JOB or EXEC JCL statement.

• Specifying REGION=0 results in an unlimited MEMLIMIT for that step.

– The SMFLIMIT member of Parmlib.

– An IEFUSI exit.

The actual MEMLIMIT for the step is shown in SMF type 30 field SMF30MEM. To

determine which of these places set the MEMLIMIT for the sort step, check the

SMF30MES and SMF30SLM fields in the type 30 SMF record for that step.

If Z Sort is not used for a sort, and the reason is one of 201, 209, 210, or 240, refer to

https://www.ibm.com/docs/en/zos/2.5.0?topic=messages-ice267i for guidance about

possible ways to address the restriction.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 15
© 2022 Watson & Walker, Inc.

https://watsonwalkerpublications.com/pdf/2020-03-005.PDF
https://watsonwalkerpublications.com/pdf/2020-03-005.PDF
https://www.ibm.com/docs/en/zos/2.5.0?topic=messages-ice267i

Reason 215, 233 - FILSZ Considerations for Z Sort

The FILSZ or SIZE sort parms can be used to provide information to DFSORT about the

number of records to be sorted. DFSORT can perform a sort more efficiently if it knows

roughly how much data it is going to sort. Generally speaking, DFSORT is able to determine

this information dynamically, so there is usually no need to specify a FILSZ or SIZE value. In

fact, even in the situation where the data set to be sorted resides on tape, DFSORT is

usually able to determine its size from your tape management product.

However, there are some situations where DFSORT is unable to dynamically determine the

file size:

 When records are inserted via an E15 exit.

 When DFSORT is invoked via a program.

– NOTE: There are two exceptions to this rule. DFSORT CAN use Z Sort for the

following program-invoked sorts:

• If DFSORT is able to read the SORTIN file (in this case, bit 5 of field ICEFLBYT and

bit 3 of field ICEIOTYP in the type 16 record will be set).

• If DFSORT was called by Db2 and the data to be sorted has variable length

records.

 A tape input does NOT have standard label information.

DFSORT will consider such sorts to be ineligible for Z Sort unless the file size is provided on

a FILSZ=nnnn or FILSZ=Ennnn statement.

Specifying FILSZ=Unnn forces DFSORT to use the provided file size, which might or might

not be accurate. If the values are inaccurate, DFSORT might allocate too few or too many

resources for the sort. As a result, sorts containing FILSZ=Unnn statements are also

considered ineligible for Z Sort. Additionally, specifying FILSZ=0 disables DFSORT’s ability

to dynamically determine the input file size, so DFSORT will not try to use Z Sort for such

sorts.

Apart from the three scenarios listed above, DFSORT generally runs more efficiently if

FILSZ is not specified. For this reason, we recommend avoiding the use of the FILSZ

parameter for sorts unless you have determined that you really do need to use it.

Bit 2 of the ICEFSZFL field in the SMF type 16 record will be turned ON if the Unnnn form of

the FILSZ parameter was specified for the sort. The FILSZ value is contained in the

ICEFILSZ field - if that field is zero and bits 0 or 1 in ICEFSZFL are turned ON, that indicates

that FILSZ=0 was specified. Either of these conditions will stop the sort from being able to

use Z Sort. If you check the NZDETRPT report, you will see that it reports if FILSZ was

specified in the sort control statements, and if so, it shows the value specified on the FILSZ=

statement.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 16
© 2022 Watson & Walker, Inc.

Regardless of Z Sort support, the use of FILSZ might be an

interesting topic to review anyway. If the use of FILSZ can

negatively impact sort performance, it might be interesting to

see how widespread its use is - if you have many sorts using

it where it is not required, you might improve overall sort

performance if you can eliminate unnecessary uses of this

parameter.

You can find more information about FILSZ in the OPTION control statement section of the

DFSORT Application Programming Guide. Also refer to the section File Size and Dynamic

Allocation in that same manual for information on situations where DFSORT cannot

determine the file size accurately, and what to do about it.

Reason 227 - Insufficient Below-the-Bar Storage

This reason is related to 31-bit storage, as opposed to 64-bit memory object storage. It can

be caused by a too-small REGION value in the JCL, or too-low DFSORT memory parms. If

the REGION size is reasonable, you could try specifying MAINSIZE=MAX if that is not your

default. If that doesn’t help, review your MAXLIM and TMAXLIM values. Also, refer to the

section titled ‘Required main storage’ in the DFSORT Installation and Customization Guide.

In particular, there is a very helpful subsection called ‘Storage Considerations’ in that manual

that shows the impact of various combinations of these parameters.

Reason 232 - zHPF Not Enabled for Sort Work Data Sets

DFSORT requires that the sort work data sets are allocated on disk volumes that support

zHPF. In our experience, nearly all customers have enabled zHPF by now. But if you are

one of the holdouts, check with your disk vendor to ensure that your subsystem(s) support

zHPF, and then enable zHPF by updating the IECIOSxx member to say ZHPF=YES (the

default is NO, so you must explicitly specify this parameter).

Reason 241 - Insufficient Disk Work Space

The recommended approach to allocating SORTWKn data sets is to remove those DD

statements from the sort jobstep and allow DFSORT to dynamically determine how many

sort work data sets are needed, and their size, based on the size of the input files. However,

it is still very common to find jobs that still contain //SORTWKn DD statements, so it is

possible that they simply have too-small SPACE values. Unless the sort is one of those

unusual ones where DFSORT is unable to dynamically determine the size of the input data

set(s), we recommend removing the //SORTWKn DD statements and let DFSORT

dynamically allocate the required data sets.

Tuning
opportunity -

eliminate
unnecessary use
of FILSZ parm.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 17
© 2022 Watson & Walker, Inc.

https://www.ibm.com/docs/en/zos/2.5.0?topic=statements-option-control-statement#opcst__filsz2
https://www.ibm.com/docs/en/zos/2.5.0?topic=sets-file-size-dynamic-allocation
https://www.ibm.com/docs/en/zos/2.5.0?topic=sets-file-size-dynamic-allocation
https://www.ibm.com/docs/en/zos/2.5.0?topic=considerations-required-main-storage

Summary of Overall Z Sort Usage

The third sample report is called SUMRPT. This report has one line for each reason code

encountered in the type 16 records you provided, sorted by SYSID. The line shows the

reason code, the SYSID, an English description of the meaning of that code, a count of the

number of job steps that encountered that reason code, and the total sort CPU time (broken

out into TCB time and SRB time) for those job steps, with totals at the system level. An

example is shown in Figure 7.

Figure 7 - Z Sort summary report

This example shows information about two systems, called FPKA and FPKB, sorted in order

of reason code within system. You will notice that the first line is for reason code 000 - those

are the job steps that did use Z Sort. Looking at system FPKA, you will see that the group of

sorts that successfully used Z Sort was the second-highest group on that system in terms of

CPU consumption, even though the actual number of job steps was relatively small - just

953 out of a total of about 45,000. This is good - it shows that the sorts that are benefiting

from Z Sort are the more CPU-intensive ones.

Overall, you can see the report gives you a very quick way to identify the reason codes that

are impacting the largest number of job steps. For example, you can see that the most

common reason code on system FPKA was 195 - sorts that were actually just copies. Those

‘sorts’ will never use Z Sort, so they can be ignored from the perspective of trying to optimize

the use of Z Sort.

Note: The default maximum number of dynamically allocated sort work data sets is 4. If

you have very large sorts, you might want to increase that maximum to a larger value -

this can be done using the DYNALOC installation parameter.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 18
© 2022 Watson & Walker, Inc.

After sorts that did use Z Sort, the next largest group in terms of CPU consumption are the

ones that had reason code 200 - these are program-invoked sorts or Db2 reorgs. DFSORT

currently doesn’t support Z Sort for program-invoked sorts unless the size of the input files is

available to the sort or if DFSORT was called by a Db2 utility, and the data to be sorted

consists of variable length records.

Moving down the list, we see that there were nearly 11,000 sorts on FPKA that didn’t use Z

Sort because of the relatively small amount of data to be sorted. The threshold is

hard-coded in DFSORT, and was set based on the cost of setting up the environment to use

Z Sort - for very small sorts, the potential savings from Z Sort would not be large enough to

offset the setup cost. While you have no control over the threshold, this is still useful

information. The most efficient sort is one that is carried out using just the 31-bit memory in

the address space. Based on your knowledge of the threshold for sending a sort to Z Sort,

you might be able to optimize your DFSORT memory-related parms to ensure that smaller

sorts (those of up to 32MB of data) can be completed using memory in the address space.

In fact, looking through the remaining reason codes, there were actually very few sorts on

FPKA that could potentially use Z Sort but that were artificially constrained. This was a

particularly well set-up system, with lots of memory, so you should not necessarily expect to

see such a positive result if you run this report for your system. Regardless, we still believe

this report will be very helpful if you are trying to determine the scope for greater use of Z

Sort, and the information provided should help you identify where to concentrate your

efforts.

You can also use the report to track your progress on the road to maximum Z Sort

exploitation. It might also be interesting to monitor the percent of sorts that did not use Z Sort

because of memory-related limitations. If you see one system that consistently has a higher

than average percentage of such sorts, that might help you justify adding memory to that

LPAR.

As we discussed previously, some sorts might not use Z Sort because of restrictions that

might be addressed in future DFSORT releases or PTFs. Should that happen, the summary

report could help you decide how much benefit you might get from applying the associated

PTF. For example, in the sample report shown in Figure 7 on page 18, there were nearly

8000 sorts that did not use Z Sort because they were invoked by another program, or they

were part of a Db2 reorg. If IBM released a PTF that removed this restriction, you could

quickly review the summary report to determine if it would be worth accelerating the

application of that PTF to your systems.

For a definitive list of the potential reasons for DFSORT not using Z Sort for a given sort,

refer to the description of the ICE267I message in the z/OS DFSORT Messages, Codes and

Diagnosis Guide.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 19
© 2022 Watson & Walker, Inc.

https://www.ibm.com/docs/en/zos/2.5.0?topic=messages-ice267i

Customizing the Sample Job

If you are interested in tracking the CPU time of one or more jobs before and after they start

exploiting Z Sort, you need information from records that have ICEFLBY5 set to 0 (not using

Z Sort) and ones that have the flag set to 1 (Z Sort was used). The sample job doesn’t

provide such a report, but it should be easy to create one. The fields you would be interested

in are probably:

ICEJOBNM Job name
ICESTPNM Step name
ICESTN Step number
ICEBDATE Date sort step ended
ICEBTIME Time sort step ended
ICESID SYSID
ICEFLBY5 Z Sort usage flag
ICEZSRNU Z Sort non-usage reason code
ICEEXBYS Number of bytes sorted
ICECPUT TCB time
ICESRBTS SRB time at start of sort
ICESRBTE SRB time at end of sort

While it would be nice to also have the elapsed time, the type 16 records don’t contain the

job step start time. That information is contained in the type 30 records, but in this article we

are sticking with just the type 16 records, so it is not available to you.

All these fields are in the Header or Data sections of the type 16 records, so you can use the

NZDETRPT job as a model. If you go to the //TOOLIN DD statement, you will find

statements similar to the following:

SORT FROM(SMFIN) TO(SMFNZ) USING(CTL1)
DISPLAY FROM(SMFNZ) LIST(NZSRTDET) -
TITLE('ZSORT NON-USAGE REPORT') TFIRST DATE TIME PAGE -
BLANK -
HEADER('JOB Name') ON(ICEJOBNM) -
HEADER('STEP Name') ON(ICESTPNM) -
HEADER('STEP Num') ON(ICESTN) -
HEADER('Step End Date') ON(ICEBDATE,DT1,E'9999-99-99') -
HEADER('Step End Time') ON(ICEBTIME,TM1,E'99:99:99') -
HEADER('SYSID') ON(ICESID) -

Each HEADER line defines a column in the report, with the value in the ‘ON’ statement

indicating the SMF field that contains the value you want to place in that column. For

example, the job name is in the field called ICEJOBNM (and ICEJOBNM is defined as a

DFSORT symbol in the symbol definitions file that you used for the three sample reports).

The only field in our list above that is not already included in the NZDETRPT job is the Z Sort

flag (ICEFLBY5), so you would add a line like the following at the appropriate point to insert

that column into the report:

HEADER('ZSORT Flag') ON(ICEFLBY5)
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 20
© 2022 Watson & Walker, Inc.

There are probably some columns in the NZDETRPT report that are not really needed if you

just want to see the CPU and elapsed times before and after the job starts using Z Sort. To

make it easier to add those columns back in at a later stage, you can simply comment them

out by adding ‘**’ in the first two positions of those HEADER lines.

There are two other changes we want to make:

 Add an INCLUDE statement specifying the job name that you want to report on.

You would do this by changing the INCLUDE COND= statement to look like this:

INCLUDE COND=(ICERTYP,EQ,16,AND, # Type 16

 ICEJOBNM,EQ,C'FPK01DFF',AND, # This job only

 ICERSUB2,EQ,ICERSUBF,AND, # Successful job

 ICEDATA,GT,0,AND, # Data sect OFFSET > 0

 ICEDATAL,GT,0,AND, # Data sect LENGTH > 0

 ICEDATAN,GT,0) # Data sect NUM > 0

 Because we want to see the job before and after it used Z Sort, you will need to remove

the INCLUDE statement that selects only jobs that did not use Z Sort.

The INCLUDE statement that we are referring to is the following:

INCLUDE=(ICEZSRNU,GT,0), # ZSORT usage code > 0

To include records for both sorts that used Z Sort and ones that did not, simply delete that

line.

If you want to see the information graphically, you could drop the resulting report into a

spreadsheet. You might also use such a report to spot job steps that go back and forth

between using Z Sort and not using it. A possible reason for such behavior might be that the

system has more available memory at some times than others. If that is the case, you might

consider adding a little more memory to that LPAR, so the system nearly always has enough

available memory to support the use of Z Sort.

This information certainly doesn’t make you a DFSORT expert, but hopefully it will be

enough to get you started. If you want to make more fundamental changes to the provided

samples, refer to the z/OS DFSORT Application Programming Guide.

zBNA Z Sort Support

Support for estimating the benefit of Z Sort was added to zBNA V2.2.4. zBNA has an

advantage over the sample programs discussed in this article because zBNA uses data

from more than one SMF record type - in particular, it uses information from the type 71

records to identify how much available memory exists on your system. There is also Z

Sort-relevant information in the SMF type 30 and type 113 records that can be input to

CP3KEXTR.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 21
© 2022 Watson & Walker, Inc.

https://www-40.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R5sc236878/$file/icea100_v2r5.pdf

An advantage of zBNA compared to the ICE267I message is that zBNA is able to inspect all

the information in the type 16 record. Whereas ICE267I reports the first reason it finds for

why a given sort can’t use Z Sort, zBNA is able to report on all the reasons it can find for why

a job might not be able to use Z Sort. This can be a big time-saver if you have multiple jobs

with multiple reasons for not using Z Sort.

Figure 8 - Sample zBNA tabular report

One usage note - when you load up your Z Sort info into zBNA and select the DFSORT icon,

the initial report (as shown in Figure 8) currently gives you a list of sort job steps that could

potentially use Z Sort. If you have not implemented Z Sort yet, that list is likely to be quite

long. However, if you have already enabled Z Sort, that list will only contain the job steps

that could potentially use Z Sort, but are not doing so at the moment. We’ve been looking at

this and can’t find a way in zBNA to determine why those jobs did not use Z Sort. We even

tried clicking on the Show ineligible job steps button and scrolling through the list to find the

job steps in question, but those jobs are not included in that list. In the absence of any other

way to do it, you could take the information from zBNA and use that to create a NZDETRPT

report for just those jobs. It is not ideal, but that is the best we can offer at the moment. But

watch this space - you never know what exciting enhancements the IBM CPS tools group

have in store for us.

Something to consider is that zBNA must be installed on your PC, and many companies lock

down their PCs, making it impossible, or at least very painful, to install additional software.

Tip: zBNA actually contains a little more information than it displays on the report (in the

interest of avoiding you having to scroll back and forth to see all columns). You can see

those additional columns (System ID, Job Step Start date and time, and Job Step End

date and time), by clicking on File and then Save CSV.

You can also save the list of Ineligible Job Steps as a CSV if you would like to do filtering,

or count the number of jobs steps, or any other manipulation you would like to do with the

information provided in that report.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 22
© 2022 Watson & Walker, Inc.

And while zBNA’s graphics are very consumable, the price you pay for that is that it is more

work to create the input files needed by zBNA. As we all know, there is no such thing as a

free lunch .

There are numerous IBM documents that provide excellent information about how to use

zBNA. There are also zBNA labs that can be downloaded so you can play around with zBNA

without having to go to the trouble of running your own SMF data through CP3KEXTR.

Unfortunately, the current labs were created before the Z Sort support was added, but

hopefully this will be addressed in the near future.

For more information about zBNA, refer to the zBNA home page and the zBNA enablement

website.

References

If you would like to know more about the topics covered in this article, the following materials

might be helpful:

 SHARE Summer 2021, Making the Most of zSORT presentation by Ryan Bouchard and

Sam Smith.

 SHARE Winter 2021, Z Sort on z15 + Large Memory = Big performance! presentation by

Joe Gentile.

 SHARE Winter 2021, Accelerate Your Sorts with DFSORT Exploitation of the Integrated

Accelerator for Z Sort, presentation by Jeff Suarez.

 SHARE Summer 2020, z/OS Large Memory Considerations presentation by Dave

Betten.

 IBM video Putting the New Z SORT Named Favorite into Practice by John Burg and

Joel Moss. And you can find the corresponding PDF here.

 IBM white paper ‘IBM Z Sort and DFSORT Considerations’ by John Burg and Dave

Betten.

 ‘Sorting Out Your Sort Performance’ article in Tuning Letter 2021 No. 1.

 IBM manual z/OS DFSORT Application Programming Guide, SC23-6878.

 IBM manual z/OS DFSORT Installation and Customization, SC23-6881.

 IBM manual z/OS DFSORT Tuning Guide, SC23-6882.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 23
© 2022 Watson & Walker, Inc.

https://www.ibm.com/support/pages/ibm-z-batch-network-analyzer-zbna-tool-0
https://www.ibm.com/support/pages/zbna-enablement
https://www.ibm.com/support/pages/zbna-enablement
https://www.share.org/Events/Past-Events/Proceedings/Proceeding-Details/making-the-most-of-zsort
https://www.share.org/Events/Past-Events/Proceedings/Proceeding-Details/z-sort-on-z15-large-memory-big-performance
https://www.share.org/Events/Past-Events/Proceedings/Proceeding-Details/accelerate-your-sorts-with-dfsort-exploitation-of-the-integrated-accelerator-for-z-sort
https://www.share.org/Events/Past-Events/Proceedings/Proceeding-Details/accelerate-your-sorts-with-dfsort-exploitation-of-the-integrated-accelerator-for-z-sort
https://www.share.org/Events/Past-Events/Proceedings/Proceeding-Details/zos-large-memory-considerations
https://ibm.ent.box.com/v/zBNA-Z-Sort-Webinar
https://ibm.box.com/s/hjq76zmwxazply4m2r2ojqe9b1fe1gyd
https://www.ibm.com/support/pages/node/6468061
https://watsonwalkerpublications.com/pdf/2021-01-008.PDF
https://www-40.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R5sc236878/$file/icea100_v2r5.pdf
https://www-40.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R5sc236881/$file/icei100_v2r5.pdf
https://www-40.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R5sc236882/$file/icet100_v2r5.pdf

If you have any questions or problems with the sample jobs, use the Feedback button that

exists on nearly every DFSORT webpage. This will ensure that your questions are directed

to the right person.

Summary

When you consider the price of a modern mainframe, the Sort Accelerator might not quite

qualify as ‘something for nothing’, however it is fair to say that it is ‘something for no

additional charge’ - if you have a z15 or later CPC, every core has a Sort Accelerator on it.

And there is no question that, for a subset of your sorts, Z Sort can deliver real elapsed time

and CPU time benefits.

However, the level of benefit you observe will depend to some extent on how much time you

are willing to invest in setting it up and maximizing its exploitation. Remember that DFSORT

use of Z Sort is disabled by default, so the absolute minimum that you must do is update

your DFSORT installation parms to enable it.

Beyond that, there might be sorts that potentially could benefit from Z Sort, but are not doing

so because of some environmental constraint. If you are aware of those constraints and are

willing to invest a little time to address them, you can potentially increase the number of

sorts that see reduced CPU and elapsed times as a result of using Z Sort.

We believe the sample reports described in this article, and available on the IBM DFSORT

website, will make it significantly easier for you to get the maximum benefit from Z Sort, with

the minimal amount of your time. Kolusu’s reports help you understand whether a particular

sort job step is using Z Sort or not, and if not, why not. They help you track the exploitation of

Z Sort in your systems, and enable you to quickly home in on environmental constraints that

are impacting the largest number of Z Sort candidates. We want to thank Kolusu for his

outstanding support and enthusiasm - this article would have been a lot less valuable

without all the help he kindly gave us.
Reprinted from Cheryl Watson's Tuning Letter 2022 No.2 Page 24
© 2022 Watson & Walker, Inc.

	Optimizing DFSORT Use of Z Sort Accelerator
	Introduction
	Extracting Z Sort Insights from DFSORT SMF Records
	Sample Type 16 Record Analysis Reports
	Which Sort Job Steps Used Z Sort?
	Which Sort Job Steps Did Not Use Z Sort?
	Reason 193 - Sort Not Run on z15
	Reason 194 - Z Sort Not Enabled
	Reasons 201, 209, 210, and 240 - MEMLIMIT-Related Issues
	Reason 215, 233 - FILSZ Considerations for Z Sort
	Reason 227 - Insufficient Below-the-Bar Storage
	Reason 232 - zHPF Not Enabled for Sort Work Data Sets
	Reason 241 - Insufficient Disk Work Space

	Summary of Overall Z Sort Usage
	Customizing the Sample Job
	zBNA Z Sort Support
	References
	Summary

